

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

Development of the Browser-based 3D Visualisation

Approach for the ATLAS Outreach Applications

Alexander Sharmazanashvilia, Nino Zurashvilia, Vladimir Dolinskia, Mariam

Nozadzea

a Georgian Technical University,

Tbilisi, Georgia

E-mail: lasha.sharmazanashvili@cern.ch

Outreach & Education is an essential part of High Energy Physics (HEP) experiments where visualisation

is one of the key factor. 3D visualisation and advanced VR (Virtual Reality), AR (Augmented Reality), and

MR (Mixed Reality) extensions make it possible to visualise detectors’ facilities, explain their purpose, and

functionalities, and visualise different physical events together with essential parameters. The visualisation

applications should be extensive, easily accessible, compatible with most hardware and operating systems,

simple in use, and with a well-developed user framework and open source. The best fit to these requirements

brings browser-based applications based on the gaming engines. However, it causes limitations in the

performance because codes are interpreted in real-time by the browsers and all data should be downloaded

from the servers. Geometry descriptions play a critical role in finding agreement between the browser-

based applications' performance and the quality of the visualization scene. Best cognitive results are

delivered by so-called ‘as-built’ geometry descriptions. However, ‘as-built’ geometry is complex and

consists of a decade of millions of primitives, parts and large assemblies. Therefore, bringing them into one

visualization scene is almost impossible due to the engine’s limitations. The paper describes the TRACER

framework and 3D scenes development methods for AR/VR applications.

42nd International Conference on High Energy Physics (ICHEP2024)

18-24 July 2024

Prague, Czech Republic

http://pos.sissa.it/

Development of the Browser-based 3D Visualisation Approach for the ATLAS Outreach Applications

 Alexander Sharmazanashvili et al.

2

1. Requirements

The browser-based visualization applications respond well to the outreach & education

requirements – to be usable for a large audience with limited technical skills, be compatible with

the majority of the hardware and software platforms and be installation-free. A key factor for

development is the implementation of gaming engines.

Nowadays, graphical engines are rapidly developing for the needs of the gaming industry. They

cover a wide range of different user profiles and needs and are open sources with a large number

of developers. They implement advanced visualisation methods, including AR, VR, and MR.

However, gaming engines have limited possibilities because they are developed for particular

game scenes and scenarios. HEP scenes for visualisation are much heavier and more complex.

Therefore, the implementation of gaming engines requires the development of unique methods

and tools for visualisation to find agreement between the limitations coming from the gaming

engines and the performance of the visualisation applications.

The gaming engines have limited possibilities for the representation of the complex scenes of both

types. For instance, the WebGL three.js engine by internal methods can represent geometry with

up to 4’000 primitives inside. Scenes with geometries above this value make the visualization

applications very slow, and useless for control and interaction. For the imported geometries the

number of triangles in the scene should be less than 3 million. Otherwise, the browser kills the

process because it is very slow [1].

2. TRACER Application

There are several visualization applications for outreach & education with different purposes and

implementations – event display for visualization of the physical events, detector display for

visualization of the detector hardware, VR/AR/MR applications for organization of virtual touring

and interaction with facilities, applications for masterclasses, etc.

All these applications overlap in essential functions. They

use the scene’s common geometry descriptions and basic

controls and have standard inputs and outputs. In most

cases, they are built on the base of the same graphical

engines and have a similar graphical user interface.

Therefore, there is no purpose in repeating the

developments from one application to another. It is better to

have a ‘parent-child’ architecture. This architecture has a

core application with the basic functionality standard for all

child applications. Fig.1 presents the architecture of the

browser-based visualization application TRACER

developed by the Nuclear Engineering centre at Georgian

Technical University, Tbilisi, Georgia [2].

The TRACER core uses React and TypeScript, which brings significant benefits. React's

component-based architecture enhances code reusability and maintainability, while TypeScript's

Fig.1 Architecture of the TRACER

Development of the Browser-based 3D Visualisation Approach for the ATLAS Outreach Applications

 Alexander Sharmazanashvili et al.

3

type safety ensures reliable code. This combination improves productivity with features like auto-

completion and refactoring support [3]. Moreover, the extensive React and TypeScript

communities provide access to valuable resources. With these technologies, the TRACER core

achieves optimal performance, due to highly efficient and fast object loaders. When a detector

component is downloaded in the scene, the core module automatically activates the download of

the cut samples of the component in the local cache in background mode, assuming that the user

might request geometry cuts. This allows cuts to appear in the scene directly from the cache. All

downloaded objects are stored in the local cache, ensuring fast loading in case of repeat calls.

Other basic functions include event loaders with temporary storage in the local cache, the ability

to save and open 3D scene configurations and preset, object transparency, a grid for representing

objects in the metric system, proton-proton animation, dynamic particle distribution inside

detector components, a renderer with optimised lighting and shadings.

The TRACER uses WebGL/three.js gaming engine for rendering of interactive 3D, and 2D

graphics. The three.js provides a higher-level abstraction on top of WebGL, making it easier to

create complex 3D scenes and animations, while WebGL handles the low-level rendering.

The TRACER Framework includes several specialized applications:

1. EVD (Event Display Application) - provides a 3D view of particle collision events in the

ATLAS detector

2. TCAL (Tile Calorimeter) - offers an interactive 3D display of the Tile Calorimeter

3. ART (Augmented Reality Table) - brings the ATLAS detector to life on a discussion

table using AR technology

4. ARB (Augmented Reality Book) - extends paper documents into 3D visualizations

5. VR (Virtual Reality Application) - delivers a realistic VR experience of the ATLAS

Detector

6. EVD MC (Event Display for the International Masterclasses) - tailored for the IPPOG

Masterclasses to display event data

7. ARD (Augmented Reality Door) - augmented reality door for navigation inside of the

ATLAS Detector

8. ARL (Augmented Reality Landscape) - augmented reality landscape for visualizing the

ATLAS Detector in its real scale and environment.

3. 3D Scene Development

The TRACER is compatible with the A-Frame which enables the creation [5] of captivating AR

experiences on the web. Considering the different hosting options, SAAS (Software-as-a-Service)

platforms offer the advantage of easy setup and management, with built-in features and tools

specifically designed for AR development. However, they may have limitations in terms of

customization and scalability compared to IaaS (Infrastructure-as-a-Service) or PaaS (Platform-

as-a-Service) solutions. On the other hand, IaaS and PaaS platforms provide greater control and

scalability, allowing for custom configurations and accommodating high traffic demands.

However, they may require more technical expertise and setup time.

Development of the Browser-based 3D Visualisation Approach for the ATLAS Outreach Applications

 Alexander Sharmazanashvili et al.

4

Also, it is important to note that geometry descriptions of the 3D scenes play a crucial role in

creating AR experiences. 3D scenes are digital representations of real-world objects or characters,

which can be overlaid on top of the real-world environment in AR. There are several software

tools available for creating 3D scenes for AR. Some of the most popular options include 3D tools

such as Blender, Maya, and 3ds Max, which are widely used for creating high-quality 3D scenes.

To optimize the performance of the application it is crucial to consider the following guidelines:

Geometry: To maintain a smooth and efficient experience, limiting the polygon count of 3D assets

to below 100,000 polygons is recommended. This helps reduce memory usage and ensures faster

rendering of complex models.

Draw Calls: Keeping the number of draw calls under 200 is important for GPU efficiency. When

rendering 3D models in AR, each mesh or object within the scene requires a separate draw call to

the GPU. Draw calls are essentially commands sent to the GPU to render a particular object or

part of a scene. Excessive draw calls can increase rendering costs and degrade performance. The

best number of draw calls for the visual/performance ratio is 200. By merging objects that share

the same material and limiting the number of meshes in a USDZ/GLTF and other file formats to

approximately 50, developers can minimize the overhead associated with draw calls.

Animations are an important part of the scene, but they increase draw calls, requiring an

assessment of the pros and cons of each animation style. Skeletal animation is more realistic, but

it requires more computational power. Morph target animation allows for flexible shape

alterations at the cost of more processing. Object animation provides simplicity and economy at

the expense of sophisticated control. Developers can create captivating AR experiences that

optimize performance by carefully evaluating these elements [4].

4. Conclusion

1. Developing 3D browser-based TRACER applications requires careful consideration of tools

and methods

2. Simplifying geometry and optimizing data management ensure smoother user experiences,

leading to more accessible and impactful visualizations across various fields.

References

[1] Jose M. Noguera et al. “Visualization of Very Large 3D Volumes on Mobile Devices and WebGL”/

Proceedings of Conference WSCG Communication, January 2012

[2] Sharmazanashvili A. “Geometry Modelling in HEP” / Book ISBN 978-9941-8-5034-9 First edition,

2022, 504p

[3] Jordan Jaramillo “Why Should You Prefer TypeScript over JavaScript in React.JS?”/

https://dev.to/jordandev/why-should-you-prefer-typescript-over-javascript-in-reactjs-2d1

[4] Apple Developers. “Adding Visual Effects in AR Quick Look and RealityKit”/

https://developer.apple.com/documentation/arkit/adding_visual_effects_in_ar_quick_look_and_reali

tykit

[5] Reilly Grant et al. “DeviceOrientation Event Specification”/ W3C Working Draft, 21 April 2023

https://www.w3.org/TR/orientation-event/

https://dev.to/jordandev/why-should-you-prefer-typescript-over-javascript-in-reactjs-2d1
https://developer.apple.com/documentation/arkit/adding_visual_effects_in_ar_quick_look_and_realitykit
https://developer.apple.com/documentation/arkit/adding_visual_effects_in_ar_quick_look_and_realitykit
https://www.w3.org/TR/orientation-event/

